
deflect ions of the inner sur face  of the r ing  will coincide with the asympto t ic  behavior  of the functions H0n(T ) in 
cases  b) and e). Consequently in the col lapse  of a r ing  of ideal i ncompress ib l e  liquid per turba t ions  of 
gene ra l  f o r m  develop s i m i l a r l y  to i r ro ta t iona l  per tu rba t ions .  
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A P P L I C A T I O N  O F  E X A C T  S O L U T I O N S  O F  T H E  " S H A L L O W  W A T E R "  

E Q U A T I O N S  T O  T H E  E X P L A N A T I O N  O F  T H E  S I M P L E S T  F L O W S  

B.  L .  R o z h d e s t v e n s k i i  UDC 532.593 

Sta t ionary  solutions of the di f ferent ia l  equations of the theory  of nshallow water  n with axial  s y m m e t r y  
a r e  given by the impl ica t ions  of these equations:  

rhu = Q = Q0/2~p = const; (1) 

rv = D = const; (2) 

U2 -~ ~2 
2 -k gh ----C = const. (3) 

where  h = h(r) is the height of an i ncompres s ib l e  fluid layer  of  densi ty  p, u = u(r),  v = v(r) a r e ,  r e spec t ive ly ,  the 
r ad i a l  and c i r cum fe ren t i a l  components  of the fluid ve loc i ty  vec to r  which is cons idered  constant  along the 
ve r t i c a l  in the whole layer  0 -  < z -  < h(r} in the Wshallow water  w approx imat ion ,  g is the acce l e ra t ion  of gravi ty ,  
and Q0 is the fluid d ischarge  through any sect ion r = const  _> r 0. 

F r o m  (1)-(3) we have the re la t ionsh ip  

Q~ h2 (C - -  gh) (4) 
= t + u~h~ = ep (h.,. C~ u),. u = D/Q,  

which impl ic i t ly  defines the dependence h=h( r )  for known Q, C, D. 

Graphs of the function (p(h,.C, u) a r e  p resen ted  in Fig. 1 for u = 0 and ~ = 1. 

The method of the graphica l  de terminat ion  of the dependence h = h(r) is evident f r o m  (4), and it is a lso 
c l ea r  f r o m  Fig. 1 that  a s t a t iona ry  a x i s y m m e t r i c  solution of the nshallow water  n equations exis ts  only for 

r > r,(Q, C, u)v'~ r , (Q,  C, O) = ( V 2 - ~ ) g Q C - 8 / L  

Hence (4) yields  two solutions co r respond ing  to two dif ferent  fluid flow r e g i m e s .  

The f i r s t  flow r e g i m e  c o r r e s p o n d s  to the dependence h = h(r),  de te rmined  f r o m  (4) for 0 <h <h , (C ,  ~4), 
and the second for  h . (C,  u ) < h  <C/g. Here  h . (C,  ~) denotes the value of h for which ~(h, C, ~) r e aches  the 
max imum.  It  can  be seen  that  for ~r r 0 

h , ( C ,  • < h(C, O) = 2C/3g. 

Moscow. Trans la t ed  f r o m  Zhurnal  Pr ik ladnoi  Mekhaniki i Tekhnicheskoi  Fiziki ,  No. 2, pp. 21-25,  
March -Apr i l ,  1979. Original  a r t i c l e  submit ted  March 28, 1978. 
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The f i r s t  r e g i m e  is  s u p e r c r i t i c a l  s i n c e  the cond i t i on  luI > c-- s a t i s f i e d ,  whi l e  the second  r e g i m e  in s u b -  
c r i t i c a l .  

In the f i r s t  f low r e g i m e  we have  an  a s y m p t o t i c  a s  r -  ~o 

h(r)~_lQI t_ u(r)~sgnQ.1/2C. (5) 
YfC r, 

On the o t h e r  hand,  i n  the s econd  r e g i m e  the  f lu id  l e v e l  h(r) is  r a i s e d  with the  g rowth  o f  r and  a s  r - ~  ~o 

h(r) --+ C/g, u(r) ~__ Qg/Cr. (6) 

The  s o l u t i o n  is  d e t e r m i n e d  un ique ly  f r o m  (1)-(4) by  g iv ing  h( r ) ,  u ( r ) ,  v(r)  a t  any  po in t  r = r 0 s i n c e  t h e s e  
c ond i t i ons  g o v e r n  w h e t h e r  h = h(r) be longs  to one  of  the two b r a n c h e s  of  the c u r v e  (4). 

So lu t ions  of  the s y s t e m  of c o n s e r v a t i o n  laws u n d e r l y i n g  the t h e o r y  of " s h a l l o w  w a t e r "  can have  a d i s -  
con t i nu i t y ,  a " w a t e r  j u m p . "  They  a r e  on the l ines  r = c o n s t  in the c a s e  of s t a t i o n a r y  a x i s y m m e t r i c  f lows.  

The m a g n i t u d e  of  the  fluid d i s c h a r g e  Q0 and the t a nge n t i a l  m o m e n t u m  c o m p o n e n t  DQ0/r a r e  e v i d e n t l y  
con t inuous  on the d i s con t inu i t y .  This  m e a n s  tha t  the  r e l a t i o n s  (1) and  (2) a r e  s a t i s f i e d  even  in the  d i s con t inuous  
s o l u t i o n s  and,  in p a r t i c u l a r ,  tha t  the  quan t i t y  u is  c o n s t a n t  in the whole  flow. 

The t h i r d  cond i t i on  which m u s t  be posed  on the d i s c o n t i n u i t y  is  not  qu i t e  so e v i d e n t  and  can ,  in p r i n c i p l e ,  
depend on the cond i t i ons  of the p r o b l e m .  The  c r u x  of the  " s h a l l o w  w a t e r "  a p p r o x i m a t i o n ,  which  r e p l a c e s  the  
m o m e n t u m  d i s t r i b u t i o n  a l o n g  the v e r t i c a l  by  i t s  m e a n  va lue  and n e g l e c t s  the  m o m e n t u m  lo s s  b e c a u s e  of  f luid 
f r i c t i o n  on the bo t t om,  would be t aken  into a c c o u n t  in so lv ing  th is  p r o b l e m .  In s u b s t a n c e ,  a j u m p  in the f lu id  
l e v e l  for  a h o r i z o n t a l  b o t t o m  m e a n s  tha t  a t  th is  s i t e  the f r i c t i o n  on the b o t t o m  i n i t i a t e s  the o c c u r r e n c e  of a 
s t r e a m  t r a n s f o r m a t i o n  zone in which  the  i n t e r n a l  f lu id  f r i c t i o n  r e t a r d s  the u p p e r  f luid l a y e r s ,  hence  p r o d u c i n g  
a r i s e  in the f lu id  l eve l .  

The a s s u m p t i o n  abou t  c o n s e r v a t i o n  of  the  t o t a l  m o m e n t u m  of the f luid l a y e r  a t  the d i s c o n t i n u i t y  can be  
c o n s i d e r e d  m o s t  n a ~ t r a l  and c o m p a r a t i v e l y  e x a c t  wi th in  the f r a m e w o r k  of the  " s h a l l o w  w a t e r "  t h e o r y .  Hence ,  
we s h a l l  r e q u i r e  con t i nu i t y  of the r a d i a l  c o m p o n e n t  of  the  m o m e n t u m  flux t e n s o r  a t  the d i s c o n t i n u i t y ,  i . e . ,  
con t inu i ty  of the quan t i t y  

] = P ( - ~  h~+ hu~). 

L e t  us note t h a t  con t inu i ty  o f  the quan t i t y  j a t  a j u m p  c o n t r a d i c t s  the  cond i t ion  (3) and ,  hence ,  the quan t i t y  C 
u n d e r g o e s  a d i s c o n t i n u i t y  a t  the  j u m p .  Le t  h 0 < h . ( C ,  u)  and h+ be v a l u e s  of  the  f luid l e v e l  he igh t  on d i f f e r e n t  
s i d e s  o f  the d i s c o n t i n u i t y  on a c i r c l e  of  r a d i u s  r i h e r e  h 0 i s  u p s t r e a m .  

Then the con t i nu i t y  cond i t ion  for  the m o m e n t u m  f lux r e s u l t s  in  the equa t ion  

g h 2 -l-2q)(h o,C,~) __ g ., 2q~(ho, C,• 
2- + - -  h+ - - T  h~ + h0 ,: 

which i s  e a s i l y  so lved  by  t ak ing  a c c o u n t  of  (1) and (2). We ob t a in  the  f o r m u l a s  
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A stable jump is just  the passage f rom the superc r i t i ca l  zone (before the jump) to the subcri t ical  zone (after 
the jump) in the flow direction. It is hence n e c e s s a r y  to assume that ho<h,(C , z ) ,  which resu l t s  in the con- 
ditions ~ > 1, K > 1, h+> h o, Therefore ,  a value of the fluid level h+ = h+(r) corresponds  to each h 0 = h(r) < h.(C, u) ,  
and the set  of points {h+(r), Q2g2/2C3r~ forms a curve of shock passage f rom the supercr i t ica l  to the sub- 
c r i t ica l  flow zones. The dashed lines in Fig. 1 show two such curves  corresponding to the cases  ~< = 0 and 
~ = 1 .  

Therefore ,  the problem of the' fluid spreading over  the horizontal  plane with given h(ro) , u(r0) , v(r0) has 
an uncountable set  of solutions within the f ramework of the "shallow water"  theory;  one is continuous and the 
uncountable set  discontinuous (the discontinuity can be set  at  any point r >ro) for h(r 0) < h.(C, ~). 

The solution is unique in the case h(ro) > h,(C, ~<). Possible  kinds of solutions (and flows) a re  shown 
schemat ica l ly  in Fig. 2; the a r row indicates the displacement  of points during downstream motion. 

Therefore ,  the "shallow water"  theory cannot determine the flow pattern uniquely for h(r o) <h.(C,  u) and 
additional reasoning is requi red  to refine it. 

To this end, let us consider the conditions for applicability of the "shallow water"  approximation in our 
p rob lem by considering the fluid to possess  low viscosi ty .  

For  the "shallow water"  approximation to be applicable it is neces sa ry  that the total head gh2/2 + hu 2 of 
the fluid layer  substantial ly exceed the viscous s t r e ss  which we es t imate  as IvhOu/Ozl N v l u ~  where ~ is the 
coefficient  of kinematic viscosi ty.  

Thus we have the applicabili ty condition 

gh~/2 + hu 2 >> v]u!, 

o r  

where Re = h]u]/v = IQl/r~ is the Reynolds number;  Fr  = u2/gh is the Froude number.  

Taking account  of the asymptot ic  behavior of the solutions (5) and (6) as r - -0% we conclude that 

Be--*-0, Fr--~oo, E = Re( l  + l / F r ) - + 0  

in the case of the superc r i t i ca l  flow (h(r 0) <h,(C,  ~)) and 

R e - + 0 ,  Fr-)-0,  E = Re (1 -]- l /Fr)-+oo as r - + ~  

in the case  of a subcr i t icaI  flow (h(r0) > h,(C, u)).  Hence, it is c lear  that the conditions for applicability of 
this approximation as r grows a r e  improved for the subcr i t ica l  Flow and degraded for the supercr i t ica l  flow. 
The superc r i t i ca l  flow is therefore  not rea l ized  for all  r >r0 and it can be assumed that the flow goes f rom the 
superc r i t i ca l  to the subcr i t ica l  reg ime by a jump at  namely that point r a t  which the conditions of applicability 
of the "shallow water"  theory  a r e  spoiled, i .e. ,  where the effect of v iscos i ty  is substantial  and the quantity E 
becomes  sufficiently smalh  

E = Re (t -I- l/Fr) = E, .  (7) 
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Within the f ramework  of such a model,  the quantity E .  should be universal  and independent o:[ the dis-  
charge  Q0, the initial conditions, and the specific fluid. The quantity E ,  should be determined f rom test  or  
f rom a more  genera l  model. The condition (7) for a known E ,  determines  h 0 <h,(C,  u) and the coordinate r of 
the jump where the change in flow reg imes  occurs .  

This simple model explains the qualitative and quantitative charac te r i s t i cs  of the two s imples t  flows 
fa i r ly  well: the spreading of a fluid supplied by a source with a constant  discharge Q0 > 0 over  a horizontal 
plane, and the overflow of a fluid lying on an infinite horizontal  plane, through a c i rcu la r  hole. 

The f i r s t  problem i s  i l lustrated by the cus tomary  spreading of water  over  the horizontal  bottom of a 
basin  during the fall of a water je t  f rom a faucet on it; a more  accura te  i l lustrat ion is obtained upon rep lace -  
ment of the basin by a horizontal  flat smooth glass,  metal ,  plexiglass,  etc. surface of compara t ive ly  small  size 
(~ 30 • 30 cm). The second problem is associa ted with the final stage in the process  of water overflowing f rom 
a bath through a c i rcu la r  overflow hole. 

Keeping the f i rs t  problem in mind, it is natural  to set  z = 0. It is seen that the two reg imes  indicated in 
Fig. 2 are  possible for Q0> 0; the reg ime  b and the reg ime  a ~ b '  with the water jump at the point r determined 
f rom condition (7). Both r eg imes  are  rea l ized  in prac t ice ;  however,  the second possibil i ty,  with the formation 
of a jump, is accomplished for a jet falling f rom even  a low height. 

In this case F r > l  (since h(r0)<h,) and F r ~  as r ~ .  The water jump occurs  for sufficiently small  h 0 
and large r so that the quantity ~/Fr in {7) can apparent ly be neglected. We then have f rom (7) 

Re = Re, = Qo/2apw ..... Qo/2~*lr. (8) 

The s imples t  measurements  under domestic  conditions resu l t  in the conclusion that Re ,  = E ,  ~ 150. If 
this number is taken as Re , ,  then (8) is satisfied quite well as the different problem pa ramete r s  are  var ied,  
i .e. ,  the discharge Q0, the height of jet fall (the quantity C). 

Within the f ramework of the "shallow water"  theory,  the stability conditions admitted two reg imes  also 
in the overflow problem:  b and a ~ b '  (see Fig. 2, Q0 < 0). However, the las t  reg ime should be acknowledged as 
unreal is t ic  since the "shallow water"  theory  is used in the reg ime a as r ~ ,  where E ~ 0 .  Therefore ,  for 
Q0 <0 one single overf low reg ime remains  b. For a given height h of the fluid layer at  infinity, the fluid d is -  
charge  q0<0 through any section r = r 0  is bounded by IQ0] < rob V ~ g  h" For h - - 0  the maximum discharge 

through a hole of radius r 0 tends to zero and becomes less than the free discharge of the overflow hole. In 
this case a breach in the water  surface occurs  at  the middle of the overflow hole. 

As r ega rds  the fluid twisting which hence ordinar i ly  occurs ,  it is explained, in our opinion, by the non- 
s y m m e t r y  of the rea l  conditions of the problem as well as by the diminution in the discharge through the hole 
as the fluid twists.  This problem has been studied both theoret ical ly  and experimental ly.  A quite complex flow 
model has been constructed in [1], which never theless  does not yield good agreement  with the resu l t s  of exper i -  
ments [2]. 
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